

Engineering and Physical Sciences Research Council

Blistering Formation in High Strength Steels (HSS) During Hot Rolling

Rebecca Dewfall

Industrial supervisor : Vladimir Basabe Academic Supervisor: Dr. Mark Coleman

Last year – Poster presentation

Rolled in scale

Project Background

- Blistering occurs when oxide scale is swollen during oxidation; generating a critical stress and gas release at the scale/ steel interface.
- Blistered scale causes surface defect problems when it is rolled, becoming embedded into the steel.
- It is important to understand the mechanism of blistering and control the blister formation in order to prevent surface defects.
- Severe blistering has been found to occurs in temperatures between 950 and 1000°C.

Nucleation and growth modes were investigated in order to understand the mechanism of blister formation.

Blister defect

Blister in finishing strip mill

Steel Grades

Steel	С	Si	Mn	Al	Cr
3812	0.15	0.1	0.86	0.036	0.028
B32	0.003	3.2	0.2	0.9	-

3812 Heat Treatment

3812 Blister Heat Treatment

6

3812 Formation Mechanisms

3812 Blister

3812 Whisker formation

Oxide growth preferential plane

Idiomorphicgrowth

3812 Blister

3812 EBSD Phase identification

3812 Raman Spectroscopy

3812 New phenomena (blister during cooling)

B32 Oxide morphology

B32 Oxide morphology

B32 Oxide morphology

B32 Raman spectroscopy

1- Comparison of LDA and GGA results. Phys. Rev. B. 67.10.1103/PhysRevB.67.094106.

B32 Raman spectroscopy

Electron Image

Al

- 1. Blister formation on B32 and 3812 steel grades were characterized; key differences were found in the oxide morphologies
- 2. New phenomena discovered within 3812 steel grade; blister on cooling
- 3. B32 contains a complex AI-Fe2SiO₄-FeO eutectic in the bulk of the oxide which is not present within blistered regions

Future Work

- Nanoindentation on oxide to assess stress within oxide layers
- Insitu investigation of early stages of oxidation
- FIB inside of blister region to produce TEM lamella to investigate oxidation within the blister
- X-ray CT to investigate porosity

Thank you for listening

Rebecca Dewfall Email: <u>829880@Swansea.ac.uk</u>

Industrial supervisor : Vladimir Basabe Academic Supervisor: Dr. Mark Coleman